Introduction to Cold Atom Physics

An introduction to cold atom physics. A glympse into NASA´s Coolest Experiment and The Future of the Field.

This video introduces the concepts involved in cooling down atoms to such low temperatures that their quantum mechanical properties can be observed and manipulated.

Nasa and Cold Atoms

NASA’s Cold Atom Lab will produce clouds of ultra-cold atoms aboard the International Space Station to perform quantum physics experiments in microgravity. Atoms are chilled to about one 10 billionth of a degree above Absolute Zero, or about 10 billion times colder than the average temperature of deep space. At those temperatures, atoms behave in strange ways, allowing scientists to investigate the fundamental nature of matter. For more info about CAL, visit The clouds of ultra-cold atoms CAL produces are called Bose-Einstein Condensates (BECs), a bizarre state of matter in which atoms exhibit quantum behavior at macroscopic a scale you can see. BECs make it possible for researchers to probe the fundamental nature of matter. Hundreds of BEC experiments exist on Earth, but on the International Space Station, free from the pull of gravity, scientists will be able to observe BECs for much longer than what is possible on Earth, and reach even colder temperatures than what is typically achieved on the ground. The Cold Atom Lab will move scientists another step closer to solving some of the biggest mysteries in the universe, such as understanding the nature of dark matter and dark energy and solving the disagreement between quantum mechanics and the theory of gravity. Research done on CAL can also have practical applications, such as making improvements to atomic clock technologies, which are used in spacecraft navigation, as well as the GPS satellites that provide navigation information to devices like smartphones. CAL research could also lead to improvements to quantum sensors used for remote sensing on spacecraft. These sensors can be used for a variety of applications, including monitoring Earth’s changing climate and remotely studying the internal makeup of planets and asteroids.

The Future

Dr. Erickson is a research physicist in the Cold Atom Precision Timing and Navigation group in the Space Vehicles Directorate of the U.S. Air Force Research Laboratory. He believes that the future of many commonplace devices lies with the technology being developed to cool and trap atoms. Cold atom technology is at the cusp of transitioning from the laboratory to industry. As more people develop a basic understanding of atomic physics, the applications of it may be found to expand across many diverse fields. In the spirit of ideas worth spreading, TEDx is a program of local, self-organized events that bring people together to share a TED-like experience. At a TEDx event, TEDTalks video and live speakers combine to spark deep discussion and connection in a small group. These local, self-organized events are branded TEDx, where x = independently organized TED event. The TED Conference provides general guidance for the TEDx program, but individual TEDx events are self-organized.* (*Subject to certain rules and regulations)

What is Quantum Mechanics?

Quantum mechanics is one of the most important physics branches in charge of matter and light in the subatomic scale. It attempts to describe the components of electrons, protons, and other subatomic particles.

“Quantum mechanics (QM; also known as quantum physics or quantum theory), including quantum field theory, is a branch of physics which is the fundamental theory of nature at the small scales and energy levels of atoms and subatomic particles. Classical physics (the physics existing before quantum mechanics) derives from quantum mechanics as an approximation valid only at large (macroscopic) scales. Quantum mechanics differs from classical physics in that: energy, momentum and other quantities are often restricted to discrete values (quantization), objects have characteristics of both particles and waves (i.e. wave-particle duality), and there are limits to the precision with which quantities can be known (uncertainty principle).

Quantum mechanics gradually arose from Max Planck’s solution in 1900 to the black-body radiation problem and Albert Einstein’s 1905 paper which offered a quantum-based theory to explain the photoelectric effect. The Early quantum theory was profoundly re-conceived in the mid-1920s by Erwin Schrodinger, Werner Heisenberg, Max Born and others. The modern theory is formulated in various specially developed mathematical formalisms. In one of them, a mathematical function, the wave function, provides information about the probability amplitude of position, momentum, and other physical properties of a particle.

Important applications of the quantum theory include quantum chemistry, superconducting magnets, light-emitting diodes, and the laser, the transistor, and semiconductors such as the microprocessor, medical and research imaging such as magnetic resonance imaging and electron microscopy. Explanations for many biological and physical phenomena are rooted in the nature of the chemical bond, most notably the macro-molecule DNA.”