Introduction to Mathematics

This is a great playlist from a fantastic teacher, I hope to put more and more here about him. So here it is, introduction to math.

Mathematics (from Greek μάθημα máthēma, “knowledge, study, learning”) includes the study of such topics as quantity,[1] structure,[2] space,[1] and change.[3][4][5] It has no generally accepted definition.[6][7]

Mathematicians seek and use patterns[8][9] to formulate new conjectures; they resolve the truth or falsity of conjectures by mathematical proof. When mathematical structures are good models of real phenomena, then mathematical reasoning can provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from countingcalculationmeasurement, and the systematic study of the shapes and motions of physical objects. Practical mathematics has been a human activity from as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry.

Rigorous arguments first appeared in Greek mathematics, most notably in Euclid‘s Elements. Since the pioneering work of Giuseppe Peano (1858–1932), David Hilbert (1862–1943), and others on axiomatic systems in the late 19th century, it has become customary to view mathematical research as establishing truth by rigorous deduction from appropriately chosen axioms and definitions. Mathematics developed at a relatively slow pace until the Renaissance, when mathematical innovations interacting with new scientific discoveries led to a rapid increase in the rate of mathematical discovery that has continued to the present day.[10]

Mathematics is essential in many fields, including natural science, engineering, medicine, finance, and the social sciencesApplied mathematics has led to entirely new mathematical disciplines, such as statistics and game theory. Mathematicians engage in pure mathematics (mathematics for its own sake) without having any application in mind, but practical applications for what began as pure mathematics are often discovered later.[11][12]

Physicists like math, usually. People who hate math just don’t understand it. But like that weird ethnic food you’re scared of trying, or that odd kid in class that doesn’t say much, if you come to understand something it’s not so scary. In fact, if we can learn enough about math, we will come to love it, because there is so much we can do with it. Watch this series to supplement your math classes, or just to learn enough math that you can become friends. It starts out super easy so don’t be afraid! Okay, let’s go! “


Addition (often signified by the plus symbol “+”) is one of the four basic operations of arithmetic; the others are subtractionmultiplicationand division. The addition of two whole numbers is the total amount of those values combined. For example, in the adjacent picture, there is a combination of three apples and two apples together, making a total of five apples. This observation is equivalent to the mathematical expression “3 + 2 = 5” i.e., “3 add 2 is equal to 5″.

Besides counting items, addition can also be defined on other types of numbers, such as integersreal numbers and complex numbers. This is part of arithmetic, a branch of mathematics. In algebra, another area of mathematics, addition can be performed on abstract objects such as vectors and matrices.

Addition has several important properties. It is commutative, meaning that order does not matter, and it is associative, meaning that when one adds more than two numbers, the order in which addition is performed does not matter (see Summation). Repeated addition of 1 is the same as counting; addition of 0 does not change a number. Addition also obeys predictable rules concerning related operations such as subtraction and multiplication.

Performing addition is one of the simplest numerical tasks. Addition of very small numbers is accessible to toddlers; the most basic task, 1 + 1, can be performed by infants as young as five months and even some members of other animal species. In primary education, students are taught to add numbers in the decimal system, starting with single digits and progressively tackling more difficult problems. Mechanical aids range from the ancient abacus to the modern computer, where research on the most efficient implementations of addition continues to this day.

Subtraction is an arithmetic operation that represents the operation of removing objects from a collection. The result of a subtraction is called a difference. Subtraction is signified by the minus sign (−). For example, in the adjacent picture, there are 5 − 2 apples—meaning 5 apples with 2 taken away, which is a total of 3 apples. Therefore, the difference of 5 and 2 is 3, that is, 5 − 2 = 3. Subtraction represents removing or decreasing physical and abstract quantities using different kinds of objects including negative numbersfractionsirrational numbersvectors, decimals, functions, and matrices.

Subtraction follows several important patterns. It is anticommutative, meaning that changing the order changes the sign of the answer. It is also not associative, meaning that when one subtracts more than two numbers, the order in which subtraction is performed matters. Because 0 is the additive identity, subtraction of it does not change a number. Subtraction also obeys predictable rules concerning related operations such as addition and multiplication. All of these rules can be proven, starting with the subtraction of integers and generalizing up through the real numbers and beyond. General binary operations that continue these patterns are studied in abstract algebra.

Performing subtraction is one of the simplest numerical tasks. Subtraction of very small numbers is accessible to young children. In primary education, students are taught to subtract numbers in the decimal system, starting with single digits and progressively tackling more difficult problems.

In advanced algebra and in computer algebra, an expression involving subtraction like A − B is generally treated as a shorthand notation for the addition A + (−B). Thus, A − B contains two terms, namely A and −B. This allows an easier use of associativity and commutativity.

Do you have more ideas, videos or content on this subject? Please contribute, the world needs your perspective.

We are looking for friends. Drop a comment!