How Does The Body Process Medicine? By Céline Valéry

Have you ever wondered what happens to a painkiller, like ibuprofen, after you swallow it? Medicine that slides down your throat can help treat a headache, a sore back, or a throbbing sprained ankle. But how does it get where it needs to go in the first place?

“A drug interaction is a situation in which a substance (usually another drug) affects the activity of a drug when both are administered together. This action can be synergistic (when the drug’s effect is increased) or antagonistic (when the drug’s effect is decreased) or a new effect can be produced that neither produces on its own. Typically, interactions between drugs come to mind (drug-drug interaction). However, interactions may also exist between drugs and foods (drug-food interactions), as well as drugs and medicinal plants or herbs (drug-plant interactions). People taking antidepressant drugs such as monoamine oxidase inhibitors should not take food containing tyramine as a hypertensive crisis may occur (an example of a drug-food interaction). These interactions may occur out of accidental misuse or due to lack of knowledge about the active ingredients involved in the relevant substances.

Injection (often referred to as a “shot” in US English, or a “jab” in UK English) is the act of putting a liquid, especially a drug, into a person’s body using a needle (usually a hypodermic needle) and a syringe.[1] Injection is a technique for delivering drugs by parenteral administration, that is, administration via a route other than through the digestive tract. Parenteral injection includes subcutaneous, intramuscular, intravenous, intraperitoneal, intracardiac, intraarticular and intracavernous injection.

Injection is generally administered as a bolus, but can possibly be used for continuous drug administration as well. Even when administered as a bolus, the medication may be long-acting, and can then be called depot injection. Administration by an indwelling catheter is generally preferred instead of injection in case of more long-term or recurrent drug administration.

Skin absorption is a route by which substances can enter the body through the skin. Along with inhalation, ingestion, and injection, dermal absorption is a route of exposure for toxic substances and route of administration for medication. Absorption of substances through the skin depends on a number of factors, the most important of which are concentration, duration of contact, the solubility of medication, and physical condition of the skin and part of the body exposed.

Skin (percutaneous, dermal) absorption is the transport of chemicals from the outer surface of the skin both into the skin and into circulation. Skin absorption relates to the degree of exposure to and the possible effect of a substance which may enter the body through the skin. Human skin comes into contact with many agents intentionally and unintentionally. Skin absorption can occur from occupational, environmental, or consumer skin exposure to chemicals, cosmetics, or pharmaceutical products. Some chemicals can be absorbed in enough quantity to cause detrimental systemic effects. Skin disease (dermatitis) is considered one of the most common occupational diseases.[1] In order to assess if a chemical can be a risk of either causing dermatitis or other more systemic effects and how that risk may be reduced one must know the extent to which it is absorbed, thus dermal exposure is a key aspect of human health risk assessment.”https://en.wikipedia.org/wiki/Absorption_(skin)

Leave a Reply